Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ibrain ; 9(2): 133-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786553

RESUMO

Due to the existence of the blood-brain barrier in glioma, traditional drug therapy has a poor therapeutic outcome. Emerging immunotherapy has been shown to have satisfactory therapeutic effects in solid tumors, and it is clinically instructive to explore the possibility of immunotherapy in glioma. We performed a retrospective analysis of RNA-seq data and clinical information in 1027 glioma patients, utilizing machine learning to explore the relationship between tyrosine metabolizing enzymes and clinical characteristics. In addition, we also assessed the role of tyrosine metabolizing enzymes in the immune microenvironment including immune infiltration and immune evasion. Highly expressed tyrosine metabolizing enzymes 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, and fumarylacetoacetate hydrolase not only promote the malignant phenotype of glioma but are also closely related to poor prognosis. The expression of tyrosine metabolizing enzymes could distinguish the malignancy degree of glioma. More importantly, tyrosine metabolizing enzymes regulate the adaptive immune process in glioma. Mechanistically, multiple metabolic enzymes remodel fumarate metabolism, promote α-ketoglutarate production, induce programmed death-ligand 1 expression, and help glioma evade immune surveillance. Our data suggest that the metabolic subclass driven by tyrosine metabolism provides promising targets for the immunotherapy of glioma.

3.
ACS Appl Mater Interfaces ; 15(32): 38846-38856, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37537978

RESUMO

This paper presents facile photoresponsive actuators comprising ferrocene as a guest chromophore and poly(butyl methacrylate) (PBMA) as a host matrix. The ferrocene-doped PBMA film exhibits mechanical expansion and contraction when a 445 nm laser is turned on and off, respectively. The photoresponsive film is attached by a commercially available acetylcellulose adhesive tape, which exhibits a bending motion that is controlled by turning the laser on and off. Thereafter, the double-layer film is employed to fabricate a table-shaped lifting machine (0.7 mg) that lifts a 10.5 mg object up and down by turning the laser on and off, respectively, and the mechanical force offered by the double-layer film is recorded. Additionally, the film is coated with gold and applied to an electric circuit that serves as a reversible photoresponsive switch. This film preparation technique is applied to other chromophores (e.g., Coumarin 343, Rhodamine 6G, Sudan Blue II, and Solvent Green 3) to independently control the motions of the films with 445, 520, and 655 nm lasers. The ferrocene-containing films also exhibit photoinduced healing from mechanical damage. Finally, the photoirradiation-accompanied morphological changes in the film are observed via small-angle X-ray scattering.

4.
Expert Opin Ther Targets ; 27(8): 733-743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37571851

RESUMO

INTRODUCTION: Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED: In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION: Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.


Assuntos
Glucosefosfato Desidrogenase , Neoplasias Ovarianas , Humanos , Feminino , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Via de Pentose Fosfato , Glucose/metabolismo
5.
Int J Biol Macromol ; 243: 125196, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285890

RESUMO

The cells are like a highly industrialized and urbanized city, filled with numerous biological macromolecules and metabolites, forming a crowded environment. While, the cells have compartmentalized organelles to complete different biological processes efficiently and orderly. However, membraneless organelles are more dynamic and adaptable for transient events including signal transduction and molecular interactions. Liquid-liquid phase separation (LLPS) is a mechanism that is widespread in which macromolecules form condensates without membranes to exert biological functions in crowded environments. Due to the lack of deep understanding of phase-separated proteins, platforms exploring phase-separated proteins by high-throughput methods is lacking. Bioinformatics has its unique properties and has proven to be a great impetus in multiple fields. Here, We integrated the amino acid sequence, protein structure, and cellular localization, then developed a workflow for screening phase-separated proteins and identified a novel cell cycle-related phase separation protein, serine/arginine-rich splicing factor 2 (SRSF2). In conclusion, we developed a workflow as a useful resource for predicting phase-separated proteins based on multi-prediction tool, which has an important contribution to the further identification of phase-separated proteins and the development strategies for treating disease.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sequência de Aminoácidos , Proteínas Intrinsicamente Desordenadas/química , Organelas/metabolismo
6.
MedComm (2020) ; 4(2): e245, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36999124

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is a major type II enzyme responsible for symmetric dimethylation of arginine (SDMA), and plays predominantly roles in human cancers, including in ovarian cancer. However, the exactly roles and underlying mechanisms of PRMT5 contributing to the progression of ovarian cancer mediated by reprogramming cell metabolism remain largely elusive. Here, we report that PRMT5 is highly expressed and correlates with poor survival in ovarian cancer. Knockdown or pharmaceutical inhibition of PRMT5 is sufficient to decrease glycolysis flux, attenuate tumor growth, and enhance the antitumor effect of Taxol. Mechanistically, we find that PRMT5 symmetrically dimethylates alpha-enolase (ENO1) at arginine 9 to promotes active ENO1 dimer formation, which increases glycolysis flux and accelerates tumor growth. Moreover, PRMT5 signals high glucose to increase the methylation modification of ENO1. Together, our data reveal a novel role of PRMT5 in promoting ovarian cancer growth by controlling glycolysis flux mediated by methylating ENO1, and highlights that PRMT5 may represent a promising therapeutic target for treating ovarian cancer.

7.
Acta Pharm Sin B ; 13(1): 157-173, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815049

RESUMO

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

8.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884433

RESUMO

p53 is a common tumor suppressor, and its mutation drives tumorigenesis. What is more, p53 mutations have also been reported to be indicative of poor prognosis in lung cancer, but the detailed mechanism has not been elucidated. In this study, we found that DNA primase subunit 2 (PRIM2) had a high expression level and associated with poor prognosis in lung cancer. Furthermore, we found that PRIM2 expression was abnormally increased in lung cancer cells with p53 mutation or altered the p53/RB pathway based on database. We also verified that PRIM2 expression was elevated by mutation or deletion of p53 in lung cancer cell lines. Lastly, silence p53 increased the expression of RPIM2. Thus, these data suggest that PRIM2 is a cancer-promoting factor which is regulated by the p53/RB pathway. The p53 tumor-suppressor gene integrates numerous signals that control cell proliferation, cell cycle, and cell death; and the p53/RB pathway determines the cellular localization of transcription factor E2F, which regulates the expression of downstream targets. Next, we explored the role of PRIM2 in lung cancer and found that knockdown of PRIM2 induced cell cycle arrest, increased DNA damage, and increased cell senescence, leading to decreased lung cancer cell proliferation. Lastly, the positive correlation between PRIM2 and E2F/CDK also indicated that PRIM2 was involved in promoting cell cycle mediated by p53/RB pathway. These results confirmed that the expression of PRIM2 is regulated by the p53/RB pathway in lung cancer cells, promotes DNA replication and mismatch repair, and activates the cell cycle. Overall, we found that frequent p53 mutations increased PRIM2 expression, activated the cell cycle, and promoted lung cancer progression.

9.
Front Pharmacol ; 13: 934729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814224

RESUMO

Network pharmacology, as a novel way using bioinformatics to explore drug targets and interactions in cancer, broadens our understanding of drug action, thereby facilitating drug discovery. Here, we utilized network pharmacology to explore the role and mechanism by which cinobufotalin functions in colon adenocarcinoma (COAD). We found that cinobufotalin represses the growth and proliferation of colon cancer cells, and integrated public databases for targets reported to be associated with COAD, together with those predicted to be targets of cinobufotalin. Targets overlapped between COAD-associated proteins and cinobufotalin target proteins were used to filter candidate targets of cinobufotalin in COAD. The following proteins were thought to occupy a key position in COAD-cinobufotalin target networks: SRC, PIK3R1, MAPK1, PIK3CA, HSP90AA1, CTNNB1, GRB2, RHO1, PTPN11, and EGFR. The networks regulated by cinobufotalin were involved mainly in extracellular signal stimulation and transduction, including MAPK signaling pathway, PI3K-AKT signaling pathway, and JAK-STAT signaling pathway. Besides, transcriptome sequencing results also indicated that cinobufotalin inhibits the response of colon cancer cells to extracellular stimulation and promotes cell apoptosis. Molecular docking results showed that cinobufotalin matches in the pocket of the top candidate cinobufotalin target proteins (SRC, PIK3R1, MAPK1 and PIK3CA). These findings demonstrate cinobufotalin can be developed as potential anti-cancer therapeutics.

10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562974

RESUMO

Kidney renal clear cell carcinoma (KIRC) with poor prognosis is the main histological subtype of renal cell carcinoma, accounting for more than 80% of patients. Most patients are diagnosed at an advanced stage due to being asymptomatic early on. Advanced KIRC has an extremely poor prognosis due to its inherent resistance to radiotherapy and chemotherapy. Therefore, a comprehensive understanding of the molecular mechanisms of KIRC and the development of effective early diagnostic and therapeutic strategies is urgently needed. In this study, we aimed to identify the prognosis-related biomarker and analyzed its relationship with tumor progression. Metabolic changes are an important feature of kidney cancer, where the reduction of fumarate allows us to target the tyrosine metabolic pathway. The homogentisate 1,2-dioxygenase (HGD) and glutathione S-transferase zeta 1 (GSTZ1) related with prognosis of KIRC was identified through bioinformatics analysis based on The Cancer Genome Atlas (TCGA) databases. Mechanistically, we found that decreased HGD and GSTZ1 promote aerobic glycolysis in KIRC, coordinate the balance of amino acid metabolism and energy metabolism in tumor cells, and ultimately activate the tumor cell cycle and tumor progression. In summary, we identified the tyrosine metabolizing enzymes HGD and GSTZ1 as biomarkers of KIRC, which will further the understanding of the tumor metabolism profile, provide novel strategies and theoretical support for diagnosing and treating KIRC and as referential for future clinical research.


Assuntos
Carcinoma de Células Renais , Glutationa Transferase , Homogentisato 1,2-Dioxigenase , Neoplasias Renais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Dioxigenases/sangue , Dioxigenases/metabolismo , Feminino , Glutationa Transferase/sangue , Glutationa Transferase/metabolismo , Homogentisato 1,2-Dioxigenase/sangue , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Rim/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Tirosina/metabolismo
12.
Biomedicines ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35203444

RESUMO

Tyrosine is an essential ketogenic and glycogenic amino acid for the human body, which means that tyrosine is not only involved in protein metabolism, but also participates in the metabolism of lipids and carbohydrates. The liver is an important place for metabolism of lipids, carbohydrates, and proteins. The metabolic process of biological macro-molecules is a basis for maintaining the physiological activities of organisms, but the cross-linking mechanism of these processes is still unclear. Here, we found that the tyrosine-metabolizing enzymes, which were specifically and highly expressed in the liver, were significantly down-regulated in hepatocellular carcinoma (HCC), and had a correlation with a poor prognosis of HCC patients. Further analysis found that the reduction of tyrosine metabolism would activate the cell cycle and promote cell proliferation. In addition, we also found that the solute carrier family 27 member 5 (SLC27A5) regulates the expression of tyrosine-metabolizing enzymes through nuclear factor erythroid 2-related factor 2 (NRF2). Therefore, the SLC27A5 and tyrosine-metabolizing enzymes that we have identified coordinate lipid and tyrosine metabolism, regulate the cell cycle, and are potential targets for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA